
EXTREMAL POSITIVE PLURIHARMONIC FUNCTIONS

ON EUCLIDEAN BALLS

By

Farhad Jafari

and

Mihai Putinar

IMA Preprint Series # 2180

( November 2007 )

INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS

UNIVERSITY OF MINNESOTA

400 Lind Hall
207 Church Street S.E.

Minneapolis, Minnesota 55455–0436
Phone: 612-624-6066 Fax: 612-626-7370

URL: http://www.ima.umn.edu



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
NOV 2007 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2007 to 00-00-2007  

4. TITLE AND SUBTITLE 
Extremal Positive Pluriharmonic Functions on Euclidean Balls 
(PREPRINT) 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Minnesota,Institute for Mathematics and its
Applications,207 Church Street SE,Minneapolis,MN,55455-0436 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Contrary to the well understood structure of positive harmonic functions in the unit disk, most of the
properties of positive pluriharmonic functions in symmetric domains of Cn, in particular the unit ball,
remain mysterious. In particular, in spite of efforts spread over quite a few decades, no characterization of
the extremal rays in the cone of positive pluriharmonic functions in the unit ball of Cn is known. We
investigate this question by a geometric tomography technique, and provide some new classes of examples
of such extremal functions. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

12 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



EXTREMAL POSITIVE PLURIHARMONIC FUNCTIONS
ON EUCLIDEAN BALLS

FARHAD JAFARI AND MIHAI PUTINAR

To Professor J. J. Kohn on the occasion of his seventy-fifth birthday

Abstract. Contrary to the well understood structure of positive har-
monic functions in the unit disk, most of the properties of positive pluri-
harmonic functions in symmetric domains of Cn, in particular the unit
ball, remain mysterious. In particular, in spite of efforts spread over
quite a few decades, no characterization of the extremal rays in the
cone of positive pluriharmonic functions in the unit ball of Cn is known.
We investigate this question by a geometric tomography technique, and
provide some new classes of examples of such extremal functions.

1. Introduction.

According to a classical theorem due to Herglotz and F. Riesz, every non-
negative harmonic function in the open unit disk D is the Poisson integral of
a positive Borel measure on the unit circle T. This correspondence readily
characterizes the extreme points of the convex cone of positive harmonic
functions h in D, normalized by the condition h(0) = 1, as the Poisson
integrals of extremal probability measures on the unit circle, namely the
Dirac measures on the unit circle. Thus these extremal objects are simply
the one-parameter class of functions

uζ(z) = P (z, ζ), ζ ∈ T,
where P (z, ζ) is the classical Poisson kernel in D. This observation readily
recasts the Riesz-Herglotz representation theorem as a Choquet integral:
any positive harmonic function may be represented as a positively weighted
integral of extreme points of the cone of positive harmonic functions in the
disk.

Let B2n, or simply B when there is no confusion, denote the open unit
ball of Cn and S2n−1, or S, be the boundary of B. Recall that a C2-function
is pluriharmonic in B if for every a ∈ B and b ∈ Cn ua,b(λ) = u(a + bλ) is
harmonic for every λ ∈ C such that a+ bλ ∈ B. Forelli [F1] has shown that
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Work partially supported by the IMA and the AFOSR.
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2 JAFARI AND PUTINAR

if u ∈ C∞(0) and uζ(λ) = u(λζ) is harmonic in D for every ζ ∈ S, then u
is pluriharmonic in B. Equivalently, u is pluriharmonic in B if and only if
u ◦ ψ is harmonic in B for every ψ ∈ Aut(B), where the latter denotes the
group of complex analytic automorphisms of the ball. It is easy to see that
Cayley’s transform f → 1+f

1−f = F establishes a one-to-one correspondence
between the positive pluriharmonic functions u = <(F ), normalized such
that F (0) = 1, and holomorphic maps f : B2n → B2 so that f(0) = 0. An
excellent reference to this topic is Rudin [R].

The aim of this note is to analyze the structure of the extremal points in
the class of positive pluriharmonic functions on the unit ball of Cn and to
produce some new examples of such functions. Establishing a Herglotz-Riesz
representation theorem, via Choquet theory or not, valid for all positive
pluriharmonic functions in B is still a distant goal. This is due to the lack
of an effective description of all extremal positive pluriharmonic functions.

Let PH+
0 (B) denote the class of positive pluriharmonic functions u such

that u(0) = 1, and Probh(S) be the class of positive probability measures µ
such that u = P [µ], where P is the Poisson kernel of B. That is, Probh(S)
is the set of all probablility measures on S whose Poisson integral is pluri-
harmonic. Clearly, there is a one-to-one correspondence between PH+

0 (B)
and Probh(S), and pre-images of extremal points of PH+

0 (B) are extremal in
Probh(S). Unfortunately this dictionary is of little use, as the class Probh(S)
resists any intrinsic characterization. Since, Probh(S) is convex and weak∗

compact, the evaluation µ to µ(F ) is upper semicontinuous on Probh(S),
hence its maximum is attained at some extreme point of Probh(S). The
maximal measures so obtained provide a sufficiency condition for extreme.
Whether all extreme measures are of this type would depend on strong con-
vexity of the unit ball of Probh(S). If f is an inner function on B, then
<(F ) = 1+f

1−f has zero radial limits a.e. on S, and F is generated by a sin-
gular measure in Probh(S). In particular, maximal singular measures, i.e.
PH+

0 (B) functions generated by certain inner functions will be extreme.
But not all inner functions necessarily generate an extremal u in PH+

0 (B).
The following result of Forelli shows that extreme points of PH+

0 (B) must
have a special irreducibility property.

Theorem 1. ([F2]). If u ∈ PH+
0 (B) is extremal and u = <(F ), F = 1+f

1−f ,
then f is irreducible, i.e. there is no factorization of f = gh, where are
holomorphic and g, h : B2n → B2.

Proof. To get a contradiction, assume f is as above factorable. Without
loss of generality, we can assume that g(0) = 0 and h(0) = it, 0 ≤ t ≤ 1.
Put

F1 =
(1− g)(1− h)

1− gh
+ it, F2 =

(1 + g)(1 + h)
1− gh

− it.
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It is easy to see that <Fj ≥ 0 and Fj(0) = 1 for j = 1, 2. Since F1+F2 = 2F ,
and u = <(F ) is extreme, <(F1) = <(F2) and since Fj(0) = 1, F1 = F2.
Hence

h = i
t+ ig

1 + itg
.

Rewriting F in terms of this g and h, one gets

F =
1 + t

2
1 + ig

1− ig
+

1− t

2
1− ig

1 + ig

which implies that the real part of F can be expressed as a convex combi-
nation of two distinct members of PH+

0 (B), unless t = 1. But then h is a
constant.

It is worth noting that Forelli’s original theorem assumes F is extremal.
It is trivial to show that u is extremal if and only if F is extremal, since
F is uniquely determined by its real part u. A variant of another theorem
of Forelli [F3] demonstrates an invariance property of the extreme points of
PH+

0 (B).

Proposition 2. If u is an extreme point of PH+
0 (B), and ψ is an auto-

morphism of B, then v = u(ψ(z))
u(ψ(0)) is an extreme point of PH+

0 (B).

Proof. If u ∈ PH+
0 (B), clearly v ∈ PH+

0 (B) and u 7→ v maps PH+
0 (B)

onto PH+
0 (B). Now suppose u is an extreme point of PH+

0 (B) but v =
tg + (1 − t)h for 0 ≤ t ≤ 1 and g, h ∈ PH+

0 (B). Then the pre-image
of v in PH+

0 (B) is a convex combination of pre-images of g and h with
s = <(tg(a))

<(tg(a)+(1−t)h(a)) , a = ψ−1(0). Since u is extreme, either s = 0 or s = 1,
which imply either t = 0 or t = 1.

2. Disintegration of positive pluriharmonic functions

By analogy to the disk, it is tempting to conjecture that, since a function
u is pluriharmonic if and only if each slice of u is harmonic in the disk,
and the extreme points of the positive harmonic functions are the Poisson
kernels of Dirac measures on each slice, every positive pluriharmonic function
on the ball is generated by these measures on the one-dimensional slices.
Clearly, the automorphisms of B leave this set invariant. Unfortunately,
this intuition is false as it is shown by the following examples, also going
back to Forelli [F4]

Example 3. If n > 1, then u = <(F ), F = 1+z21+z22+···+z2n
1−z21−z22−···−z2n

is an extreme

point of PH+
0 (B). Before we enter into the details of the instructive proof

of this result presented in Section 3, note that f(z) = z2
1 + z2

2 + · · · +
z2
n is the Poisson kernel of the singular probability measure with mass of

1
2 at (1, 0, · · · , 0) and (−1, 0, · · · , 0) and, by rotation invariance, along all
great circles. Similarly, any monomial of the type, f(z) = czm1

1 · · · zmn
n
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with c chosen such that f(z) attains a maximum modulus 1 on S, and
gcd(m1,m2, · · · , ,mn) = 1, and hence on a great circle through that point,
will give boundary values which are Dirac measures which cannot be split.

On the basis of the above examples we are returning to general considera-
tions, trying to better understand the structure of all positive pluriharmonic
functions in the ball. Let F ∈ O(B), <(F ) > 0 and F (0) = 1. Taking
boundary limits in the space of measures on the sphere

w∗ − lim
r→1

<F (rz)dσ(z) = dν(z)

where dσ is the normalized surface area measure on S. Hence one finds the
representation

F (z) =
∫
S
[

2
(1− w∗z)n

− 1]dν(w).

Above, and throughout this article, we write u∗ = (u1, ..., un), where u =
(u1, u2, ..., un), and we adopt the notation u∗v = u1v1 + ... + unvn, for the
Hermitian scalar product in Cn

As noted by Koranyi-Pukansky [KP ] and the Russain school (Aizen-
berg, Dautov) [AD] not all positive measures on the sphere can arise as such
boundary limits. They are restricted (and characterized) by the moment
conditions:

(1)
∫
S u

αuβdν(u) = 0, α 6≤ β, β 6≤ α∫
S u

αuα+β[αj + βj + 1− (|α|+ |β|+ n)|uj |2]dν(u) = 0, 1 ≤ j ≤ n∫
S u

α+βuα[αj + βj + 1− (|α|+ |β|+ n)|uj |2]dν(u) = 0, 1 ≤ j ≤ n.

The first line above comes from the fact that there are no mixed terms in
<F (ru), and the second and third from comparing the integral

∫
S |u

α+β|2dν(u)
with

∫
S |u

α+βuj |2dν(u).We will call a positive measure on S that satisfies
(1) a Korányi-Pukansky measure.

Restricting F to complex lines, we obtain for each ζ ∈ S,

(2) F (λζ) =
∫

T

1 + αλ

1− αλ
dµζ(α)

where µ is a positive probability measure supported on the unit torus T.

Combining these two observations one arrives at a balayage identity be-
tween a Koranyi-Pukanski measure ν and a family of probability measures
on the torus, µζ , namely

F (λζ) =
∫
S
[

2
(1− λw∗ζ)n

− 1]dν(w) =
∫

T

1 + αλ

1− αλ
dµζ(α), |ζ| < 1, |λ| ≤ 1.

By passing to a more restrictive class of functions, let F (z) be the Fan-
tappiè-Herglotz transform of a positive measure dm supported on S, that
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is:

F (z) =
∫
S

1 + w∗z

1− w∗z
dm(w).

For a discussion and relevance of such Fantappiè-Herglotz transforms in the
unit ball, see [McP]. Consequently, as above, the measure dµζ is the balayage
of the push forward (projection) of m on the complex line through ζ ∈ S.

Clearly if c is a unimodular constant and we rotate ζ by c, we remain on
the same circle. Hence

dµcζ(α) = dµζ(cα),
i.e. µζ is rotationally invariant on the great circles through ζ. Furthermore,
to study the dependence on ζ ∈ S, note that since F = 1+f

1−f , with f(0) = 0

and f : B2n → B2 is holomorphic, F (λζ) = 1+f(λζ)
1−f(λζ) which implies that

the function ζ 7→ µζ extends to a smooth function from the ball to prob-
ability measures on the one dimensional torus. Trying to determine how
these ”slice measures” are related to the projections of the original mea-
sure (e.g. a projection-slice theorem relative to a particular transform), a
characterization of the extremal elements will be more transparent.

We record a first observation related to the integration of the slice mea-
sures associated to a holomorphic function with positive real part in the
ball.

Theorem 4. Let µz with z ∈ B be a C∞ family of probability measures on
T, satisfying the automorphy condition

λ∗µu = µλu, |λ| = 1, |u| < 1.

Then the function

F (λu) =
∫

T

1 + αλ

1− αλ
dµu(α), |λ| = 1, |u| < 1

is holomorphic in B, <(F ) ≥ 0 and F (0) = 1. Furthermore, the family
µz, |z| < 1, is uniquely determined by <(F ).

Proof. By its very definition, the function F (λu) is C∞ in both variables
|λ| ≤ 1 and |u| < 1, plus, it is holomorphic on every complex line passing
through the origin. Thus Forelli’s theorem [F1] implies that F is holomorphic
with <F (z) > 0. Moreover,

(3) dµz(ζ) = <F (ζz)
dζ

2πiζ
, |z| < 1.

With the above dictionary between the class PH+
0 (B) and smooth, auto-

morphic maps into probability measure on the torus:

µ : B2n −→ Prob(T),

understood, we would like to push the correspondence to the boundary of
the ball, to the well defined map, still denoted by the same symbol:

µ : S2n−1 −→ Prob(T).
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The above relation provides an explicit relation of the slice measures on
the parameter u ∈ S . In particular, this dependence is smooth, rotationally
invariant, and the moments of µu are∫

T
λkdµu(λ) =

∫
T
λk<F (λu)

dλ

2πiλ
, k ∈ Z.

Let

F (z) =
∞∑

|α|=0

cαz
α

be Taylor’s expansion of the holomorphic function F in the unit ball. Con-
sequently we obtain∫

T
λkdµu(λ) =

1
2

∑
|α|=k

cαu
∗α, k > 0,

∫
T
λ−kdµu(λ) =

1
2

∑
|α|=k

cαu
α, k > 0,

and ∫
T
dµu(λ) = 1.

Thus, for a function F with <F ∈ PH+
0 (B) we can associate a map

u : S2n−1 −→ Prob(T), with the property that for every trigonometric
polynomial p(λ, λ) we obtain a C∞ map defined on the sphere

u 7→
∫

T
p(λ, λ)dµu(λ).

As a matter of fact, the dependence of µu is smooth on a larger class of
functions. For our specific aims, the following case is sufficient to consider.

Let h(λ) be a real valued harmonic function defined in an open neighbor-
hood |λ| < R of the closed unit disk (R > 1). Write h = <f with f analytic
in the disk of radius R, and choose 1 < r < R. Then Cauchy’s Theorem
implies, for |λ| = 1:

f(λ) =
∫
|w|=1

f(rw)
rw−λ ·

rdw
2πi

=
∫
|w|=1

f(rw)
1−r−1λw

· dw
2πiw

= 1
2

∫
|w|=1 f(rw)[1+r

−1λw
1−r−1λw

+ 1] dw
2πiw .

In conclusion∫
T f(λ)dµu(λ) = 1

2

∫
|w|=1 f(rw)F (r−1wu) dw

2πiw + 1
2f(0)

=
∫
|w|=1 f(rw)<F (r−1wu) dw

2πiw .

Therefore, the map u 7→
∫

T h(λ)dµu(λ) is smooth in u, as long as h is a
harmonic function defined in a neighborhood of the closed disk.

Quite remarkably, the last conclusion can be reversed, into the following
statement.
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Theorem 5. There exists a bijective correspondence between holomorphic
functions F (z) in the ball satisfying <F (z) > 0, F (0) = 1 and maps from
the sphere into probability measures on the torus with the properties:

(4) λ∗µu = µλ∗u, |λ| = 1,

and the map

u 7→
∫

T
h(λ)dµu(λ)

is C∞ for every harmonic function h defined in a neighborhood of the closed
unit disk.

We will resume in a separate work the analysis of the natural smooth-
ness condition (in some distribution space sense) satisfied by the family of
measures µu, |u| = 1.

We can recast the above result in terms of the matrix realization of Riesz-
Herglotz functions. Specifically, a probability measure on the torus is equiv-
alent, via the spectral theorem, to a unitary operator with a prescribed
cyclic vector of length one.

Proposition 6. Every automorphic family of measures µz, z ∈ S2n−1, as
before defines a family of unitary operators Uz, z ∈ S2n−1, with a common
cyclic vector ξ (of length one) by the identity:

< (w − Uz)−1ξ, ξ >=
∫

T

dµz(ζ)
w − ζ

, |w| > 1.

Moreover, the automorphy relation (4) reads as

< (w − λUu)−1ξ, ξ >=< (w − Uλ∗u)−1ξ, ξ > |w| > 1.

Again, we will expand separately this matricial realization of functions in
the class PH+

0 (B).

3. Extremal functions

Relation (3) establishes an injection from the extreme points of PH+
0 (B),

via the slice measures, into smooth families of harmonic functions of a single
complex variable. This can be interpreted as a balayage to the boundary:
for |u| = 1, the measure dµλ∗u is the balayage of the measure dµu restricted
to the circle of radius |λ|. For |λ| = 1, because we deal with measures on
the same circle, no balayage is needed. Hence

|λ| = 1, |u| ≤ 1 =⇒ dµu = (λ∗)∗dµλ∗u

where we have used ( )∗ to denote the push forward operation on measures.

Example 7. Consider first the following simple rational function in C2

f(z, w) =
1 + z

1− z
.
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We compute the associated measure corresponding to a point (a, b) ∈ S, i.e.
|a|2 + |b|2 = 1. The case a = 1 and b = 0 stands aside and we have

µ(1,0) = δ(1,0).

Choose another point a 6= 1 in which case

µ(a,b) = <f(eit(a, b))dt.

When evaluated on harmonic functions on the unit disk this gives∫
T
h(eit)dµ(a,b)(t) = h(a).

Thus, the measure lives on T, but the above formula requires to solve the
Dirichlet problem with boundary data h|T and evaluate the harmonic func-
tion h at a∗. Indeed, this shows that the dependence (a, b) → µ(a,b) is
smooth.

Now, if we consider

F (z, w) =
1 + z2 + w2

1− z2 − w2

and as above fix a point (a, b) on the unit sphere and look at the measures
on the slice passing through this point,

µ(a,b) = <F (eita, eitb)
dt

2π
,

in the sense of boundary limits from inside the disk, in case singularities in
the weight occur. For all harmonic functions h(ζ) continuous up to |ζ| ≤ 1,∫

hdµ(a,b) =
1
2
h(−

√
a∗2 + b∗2) +

1
2
h(

√
a∗2 + b∗2). (4)

This explains why the measure cannot be decomposed into a convex com-
bination. When we extend to the interior of the ball, (a, b) ∈ B, the same
formula has to be valid and taking only one summand, it will destroy the
C∞ behavior at (0, 0). Magically, when we take them both, the singularity
disappears because we deal with nice rational function

<1 + eit(a2 + b2)
1− eit(a2 + b2)

.

These examples clearly demonstrate how to construct more general exam-
ples of measures which will not decompose as convex combinations. These
measures must arise from nice rational functions of the form

<1 + eitf(z)
1− eitf(z)

where each slice behaves nicely, but such that the decomposition exhibited
in equation (4) loses its C∞ behaviour at 0.

Variations on this theme abound. Forelli already describes another such
family. Note that if f(z, w) = 2zw is a monomial which takes the maximum
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modulus 1 on the boundary of the ball in C2, and F (z, w) = 1+2zw
1−2zw , then at

a point (a, a) on the unit sphere, the measure on the slice passing through
this point is

µ(a,a) = <F (eita, eita)
dt

2π
= <1 + 2|a|2e2it

1− 2|a|2e2it
dt

2π
=

1
2
δ−1 +

1
2
δ1,

whereas the measure through other slices through the origin are clearly not
singular. Now, for all harmonic function h(ζ) continuous up to |ζ| ≤ 1,∫

hdµ(a,b) =
1
2
h(−

√
2ab) +

1
2
h(
√

2ab), (5)

which again, for the same reasons as noted above, fails to be decomposable
into convex combinations. Indeed, if µ(a,b) such decomposable so that each
piece preserves the C∞ property at {0}, then by Forelli’s theorem the two
terms generated by the decomposition will be positive pluriharmonic and
thus F will not be extreme. To characterize all measures leading to this
property, we need a family of measures for which the individual terms in the
symmetric decompositions given by Eq. (5) are not smooth at the origin,
but the sum will be smooth because of an appropriate cancellation.

Proposition 8. Let t ∈ (0, 1) and α : B2n −→ D be a function satisfying
the automorphy condition (4) and such that, for any harmonic function h
on the closed disk, the map

z 7→
∫
T
hdµz := th(α(z)) + (1− t)h(−αz),

is C∞, but tδα(z) − (1− t)δ−αz fails to have this property.
Then the family of probability measures on the unit torus µz, |z| < 1, is

associated to an extremal element of PH+
0 (B).

Proof. If we let f(z) = th(α(z))+(1−t)h(−α(z)), then h(α(z)) = 1
t (f(z)+

g(z)) and h(−α(z)) = 1
1−t(f(z) − g(z)) will not be smooth at the origin,

since g is not smooth; however, if f is smooth, then µz is smooth and thus,
by Forelli’s theorem, a generating measure for the positive pluriharmonic
functions. Hence all such µ will be extremal.

It is not hard to see that Proposition 8 also gives a necessary condition for
µ to be extremal. In analogy with the fact that every function has an even
and odd decomposition, loosely speaking, if the odd component of these
measures is not smooth, and the even one is smooth, that measure is ex-
tremal. Thus the set of extreme points of the class of positive pluriharmonic
functions is quite large, and hard to describe explicitly.

The following corollary of a key result of Aleksandrov shows another facet
of the intractable space Probh(S).

Theorem 9. Let φ : S → [0,∞[ be lower semi-continuous and ||φ||1 = 1.
Then there exists a positive Borel measure ν on S such that ν ⊥ σ on S



10 JAFARI AND PUTINAR

and, letting <(f(z)) = P [φdσ − ν](z), f(0) = 0 and F (z) = 1+f
1−f is positive

pluriharmonic in B.
Proof. By Aleksandrov’s L1-modification theorem ([A] or [R2], Theorem

10.1), if we set g1 = 0 and g2(0) = 0, g2 6≡ 0, there exists a holomorphic
h on B such that P [φdσ] − <h is a nonnegative harmonic function in B
whose radial limits are 0 a.e. [σ]. In particular, there is a positive singular
Borel measure ν so that <(F (z)) = P [φdσ − ν] is pluriharmonic and, since
g2(0) = 0, h(0) = 0, F (0) = 1.

It is easy to show that u → µu is lower semi-continuous on S and this
map is an embedding of S into a weak?-compact subset of Prob(T). Hence
the converse to the above theorem also holds. Thus, the boundary values
of PH+

0 (B) are a.e. positive lower semi-continuous functions on S and the
image of PH+

0 (B) into Probh(S) are those described by the above theorem.
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